| Conditions | 1 |
| Paths | 1 |
| Total Lines | 224 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 7 | ||
| Bugs | 0 | Features | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | /** |
||
| 16 | function (state, format, visibility, data, util, reactionService, upgradeService) { |
||
| 17 | let ct = this; |
||
| 18 | ct.state = state; |
||
| 19 | ct.data = data; |
||
| 20 | ct.util = util; |
||
| 21 | ct.format = format; |
||
| 22 | ct.upgradeService = upgradeService; |
||
| 23 | ct.adjustAmount = [1, 10, 25, 100]; |
||
| 24 | |||
| 25 | function getFermiRadius(resource) { |
||
| 26 | let isotope = data.resources[resource]; |
||
| 27 | let A = isotope.energy/data.constants.U_TO_EV; |
||
| 28 | return data.constants.FERMI_RADIUS * Math.pow(A, 0.3333); |
||
| 29 | } |
||
| 30 | |||
| 31 | function getZ(resource){ |
||
| 32 | let isotope = data.resources[resource]; |
||
| 33 | let element = Object.keys(isotope.elements)[0]; |
||
| 34 | return data.elements[element].number; |
||
| 35 | } |
||
| 36 | |||
| 37 | ct.getCapacity = function(resource, player) { |
||
| 38 | let isotope = data.resources[resource]; |
||
| 39 | let element = Object.keys(isotope.elements)[0]; |
||
| 40 | let r = data.elements[element].van_der_waals; |
||
| 41 | let area = Math.PI*r*r; |
||
| 42 | return util.calculateValue(data.global_upgrades.fusion_area.power.base, |
||
| 43 | data.global_upgrades.fusion_area.power, |
||
| 44 | player.global_upgrades_current.fusion_area)/area; |
||
| 45 | }; |
||
| 46 | |||
| 47 | ct.getTime = function(player) { |
||
| 48 | let time = ct.getFusionReaction(player).reactant.eV/util.calculateValue(data.global_upgrades.fusion_bandwidth.power.base, |
||
| 49 | data.global_upgrades.fusion_bandwidth.power, |
||
| 50 | player.global_upgrades.fusion_bandwidth); |
||
| 51 | time = Math.floor(time); |
||
| 52 | return Math.max(1, time); |
||
| 53 | }; |
||
| 54 | |||
| 55 | ct.getProductIsotope = function(beam, target) { |
||
| 56 | let beamN = parseInt(beam, 10); |
||
| 57 | let targetN = parseInt(target, 10); |
||
| 58 | |||
| 59 | let beamZ = getZ(beam); |
||
| 60 | let targetZ = getZ(target); |
||
| 61 | |||
| 62 | let productN = beamN+targetN; |
||
| 63 | let productZ = beamZ+targetZ; |
||
| 64 | |||
| 65 | return data.resource_matrix[productZ][productN]; |
||
| 66 | }; |
||
| 67 | |||
| 68 | ct.getProductEnergy = function(beam, target) { |
||
| 69 | let product = ct.getProductIsotope(beam, target); |
||
| 70 | if(!product){ |
||
| 71 | return 0; |
||
| 72 | } |
||
| 73 | let beamBE = data.resources[beam].binding_energy; |
||
| 74 | let targetBE = data.resources[target].binding_energy; |
||
| 75 | let productBE = data.resources[product].binding_energy; |
||
| 76 | |||
| 77 | return productBE - (beamBE + targetBE); |
||
| 78 | }; |
||
| 79 | |||
| 80 | ct.getCoulombBarrier = function(beam, target) { |
||
| 81 | let beamZ = getZ(beam); |
||
| 82 | let beamR = getFermiRadius(beam); |
||
| 83 | |||
| 84 | let targetZ = getZ(target); |
||
| 85 | let targetR = getFermiRadius(target); |
||
| 86 | |||
| 87 | let coulombBarrier = data.constants.COULOMB_CONSTANT*beamZ*targetZ* |
||
| 88 | Math.pow(data.constants.ELECTRON_CHARGE, 2)/(beamR+targetR); |
||
| 89 | return coulombBarrier * data.constants.JOULE_TO_EV; |
||
| 90 | }; |
||
| 91 | |||
| 92 | ct.getYieldPercent = function(player) { |
||
| 93 | let beam = state.player.fusion[0].beam; |
||
| 94 | let target = state.player.fusion[0].target; |
||
| 95 | let beamR = getFermiRadius(beam.name); |
||
| 96 | let targetR = getFermiRadius(target.name); |
||
| 97 | let beamArea = Math.PI*beamR*beamR; |
||
| 98 | let targetArea = Math.PI*targetR*targetR; |
||
| 99 | |||
| 100 | let reactorArea = util.calculateValue(data.global_upgrades.fusion_area.power.base, |
||
| 101 | data.global_upgrades.fusion_area.power, |
||
| 102 | player.global_upgrades_current.fusion_area); |
||
| 103 | let beamPercentArea = beamArea*beam.number/reactorArea; |
||
| 104 | let targetPercentArea = targetArea*target.number/reactorArea; |
||
| 105 | |||
| 106 | return beamPercentArea*targetPercentArea; |
||
| 107 | }; |
||
| 108 | |||
| 109 | ct.getYield = function(player){ |
||
| 110 | let percentYield = ct.getYieldPercent(player); |
||
| 111 | let target = state.player.fusion[0].target.number; |
||
| 112 | let beam = state.player.fusion[0].beam.number; |
||
| 113 | // the yield comes from wherever source is more abundant |
||
| 114 | let impacted = Math.max(target, beam); |
||
| 115 | return Math.floor(percentYield*impacted); |
||
| 116 | }; |
||
| 117 | |||
| 118 | ct.getFusionReaction = function(player) { |
||
| 119 | let reaction = { |
||
| 120 | reactant: {}, |
||
| 121 | product: {} |
||
| 122 | }; |
||
| 123 | |||
| 124 | let beam = state.player.fusion[0].beam; |
||
| 125 | let target = state.player.fusion[0].target; |
||
| 126 | |||
| 127 | reaction.reactant[beam.name] = beam.number; |
||
| 128 | reaction.reactant[target.name] = target.number; |
||
| 129 | |||
| 130 | let coulombBarrier = ct.getCoulombBarrier(beam.name, target.name); |
||
| 131 | reaction.reactant.eV = coulombBarrier*beam.number; |
||
| 132 | |||
| 133 | let product = ct.getProductIsotope(beam.name, target.name); |
||
| 134 | let numberYield = ct.getYield(player); |
||
| 135 | |||
| 136 | reaction.product[product] = numberYield; |
||
| 137 | |||
| 138 | // return the leftovers from the reaction |
||
| 139 | if(numberYield < beam.number){ |
||
| 140 | reaction.product[beam.name] = beam.number - numberYield; |
||
| 141 | } |
||
| 142 | if(numberYield < target.number){ |
||
| 143 | reaction.product[target.name] = target.number - numberYield; |
||
| 144 | } |
||
| 145 | |||
| 146 | let energyExchange = ct.getProductEnergy(beam.name, target.name); |
||
| 147 | if(energyExchange < 0){ |
||
| 148 | reaction.reactant.eV += energyExchange*numberYield; |
||
| 149 | }else if(energyExchange > 0){ |
||
| 150 | reaction.product.eV = energyExchange*numberYield; |
||
| 151 | } |
||
| 152 | |||
| 153 | return reaction; |
||
| 154 | }; |
||
| 155 | |||
| 156 | function activateFusion(player){ |
||
| 157 | let beam = player.fusion[0].beam; |
||
| 158 | let target = player.fusion[0].target; |
||
| 159 | |||
| 160 | if(player.resources[beam.name].number < beam.number || |
||
| 161 | player.resources[target.name].number < target.number){ |
||
| 162 | player.fusion[0].running = false; |
||
| 163 | return; |
||
| 164 | } |
||
| 165 | player.resources[beam.name].number -= beam.number; |
||
| 166 | player.resources[target.name].number -= target.number; |
||
| 167 | |||
| 168 | player.fusion[0].running = true; |
||
| 169 | } |
||
| 170 | |||
| 171 | ct.stopFusion = function(player, fusion) { |
||
| 172 | if(fusion.running){ |
||
| 173 | let beam = state.player.fusion[0].beam; |
||
| 174 | let target = state.player.fusion[0].target; |
||
| 175 | |||
| 176 | player.resources[beam.name].number += fusion.beam.number; |
||
| 177 | player.resources[target.name].number += fusion.target.number; |
||
| 178 | } |
||
| 179 | |||
| 180 | fusion.eV = 0; |
||
| 181 | fusion.active = false; |
||
| 182 | fusion.running = false; |
||
| 183 | fusion.run = false; |
||
| 184 | }; |
||
| 185 | |||
| 186 | function updateFusion(player, fusion) { |
||
| 187 | let bandwidth = util.calculateValue(data.global_upgrades.fusion_bandwidth.power.base, |
||
| 188 | data.global_upgrades.fusion_bandwidth.power, |
||
| 189 | player.global_upgrades.fusion_bandwidth); |
||
| 190 | let spent = Math.min(player.resources.eV.number, bandwidth); |
||
| 191 | fusion.eV += spent; |
||
| 192 | player.resources.eV.number -= spent; |
||
| 193 | } |
||
| 194 | |||
| 195 | function endFusion(player, fusion, reaction) { |
||
| 196 | // energy is not lost! if there are leftovers, give them back to the player |
||
| 197 | let leftover = fusion.eV - reaction.reactant.eV; |
||
| 198 | reaction.product.eV = reaction.product.eV + leftover || leftover; |
||
| 199 | // Reaction checks that the player has the quantity necessary |
||
| 200 | // to react, but here eV is stored in the fusion object. By setting the cost to 0 |
||
| 201 | // we make sure that it always work |
||
| 202 | reaction.reactant= {eV:0}; |
||
| 203 | reactionService.react(1, reaction, player); |
||
| 204 | |||
| 205 | fusion.eV = 0; |
||
| 206 | player.fusion[0].running = false; |
||
| 207 | } |
||
| 208 | |||
| 209 | function update(player){ |
||
| 210 | for(let fusion of player.fusion){ |
||
| 211 | if(!fusion.active){ |
||
| 212 | continue; |
||
| 213 | } |
||
| 214 | if(fusion.eV === 0 && fusion.run){ |
||
| 215 | activateFusion(player); |
||
| 216 | } |
||
| 217 | if(!fusion.running){ |
||
| 218 | continue; |
||
| 219 | } |
||
| 220 | updateFusion(player, fusion); |
||
| 221 | let reaction = ct.getFusionReaction(player); |
||
| 222 | if(fusion.eV >= reaction.reactant.eV){ |
||
| 223 | endFusion(player, fusion, reaction); |
||
| 224 | } |
||
| 225 | } |
||
| 226 | } |
||
| 227 | |||
| 228 | ct.adjustLevel = function(player, upgrade, amount){ |
||
| 229 | player.global_upgrades_current[upgrade] += amount; |
||
| 230 | // We cap it between 1 and the current max level |
||
| 231 | player.global_upgrades_current[upgrade] = Math.max(1, Math.min(player.global_upgrades_current[upgrade], player.global_upgrades[upgrade])); |
||
| 232 | }; |
||
| 233 | |||
| 234 | ct.visibleUpgrades = function() { |
||
| 235 | return visibility.visible(data.global_upgrades, upgradeService.filterByTag('fusion')); |
||
| 236 | }; |
||
| 237 | |||
| 238 | state.registerUpdate('fusion', update); |
||
| 239 | } |
||
| 240 | ]); |
||
| 241 |